# Land Information System (LIS) Requirements

# 1 Introduction

The purpose of this document is to describe the requirements of the Land Information System (LIS) to be implemented under funding from NASA's Computational Technologies (formerly High Performance Computing and Communications) Project. The requirements given herein are derived from several sources, including 1) the original LIS proposal; 2) the LIS grand-kickoff meeting, held March 4, 2002; 3) a formal requirements gathering process conducted by members of the GSFC LIS team, and 4) input from others, including the full Land Data Assimilation System (LDAS) and LIS teams.

The requirements are organized along the following topical areas:

- LIS General Requirements
- LIS Science Requirements
- Performance Requirements
- Usage Requirements
- Platforms
- Data Management
- Data Reliability and Security
- Online Documentation

Each requirement in this document has been assigned a priority number. A value of 1 designates the highest priority level, and so on.

Each requirement refers to a milestone. These milestones refer to the milestones documented in Task Agreement GSFC-CT-2 under Cooperative Agreement Notice CAN-00-OES-01 Increasing Interoperability and Performance of Grand Challenge Applications in the Earth, Space, Life, and Microgravity Sciences.

# 2 Descriptions

# 2.1 LIS

The Land Information System (LIS) will have the following components: (1) A high-resolution (1km) Land Data Assimilation System (LDAS), involving several independent community Land Surface Schemes (LSS), land surface data

assimilation technologies, and integrated database operations for observation and prediction data management; and (2) A web-based user interface based on the GRid Analysis and Display System (GrADS) and the Distributed Oceanographic Data System (DODS) for accessing data mining, numerical modeling, and visualization tools. The LIS will be available as a "production" system on a centralized server for large applications. By incorporating and promulgating the existing Assistance for Land\_surface Modeling Activities (ALMA; http://www.lmd.jussieu.fr/ALMA/) and DODS standards for model coupling and data visualization, LIS will contribute to the definition of the land surface modeling and assimilation standards for the Earth System Modeling Framework (ESMF).

#### 2.2 LDAS

LDAS is a model control and input/output system (consisting of a number of subroutines, modules written in Fortran 77 and 90 source code) that drives multiple offline one-dimensional LSS using a vegetation defined "tile" or "patch" approach to simulate subgrid scale variability. The one-dimensional LSS such as CLM and NOAH, which are subroutines of LDAS, apply the governing equations of the physical processes of the soil-vegetation-snowpack medium. These land surface models aim to characterize the transfer of mass, energy, and momentum between a vegetated surface and the atmosphere.

LDAS makes use of various satellite and ground based observation systems within a land data assimilation framework to produce optimal output fields of land surface states and fluxes. The LSS predictions are greatly improved through the use of a data assimilation environment such as the one provided by LDAS. In addition to being forced with real time output from numerical prediction models and satellite and radar precipitation measurements, LDAS derives model parameters from existing high resolution vegetation and soil coverages. The model results are aggregated to various time and spatial scales.

The execution of LDAS starts with reading in the user specifications. The user selects the model domain and spatial resolution, the duration and timestep of the run, the land surface model, the type of forcing from a list of model and observation based data sources, the number of "tiles" per grid square, the soil parameterization scheme, reading and writing of restart files, output specifications, and the functioning of several other enhancements including elevation correction and data assimilation.

The system then reads the vegetation information and assigns subgrid tiles on which to run the one-dimensional simulations. LDAS runs its 1-D land models on vegetation-based "tiles" to simulate variability below the scale of the model grid squares. A tile is not tied to a specific location within the grid square. Each tile represents the area covered by a given vegetation type.

Memory is dynamically allocated to the global variables, many of which exist within Fortran 90 modules. The model parameters are read and computed next. The time loop begins and forcing data is read, time/space interpolation is computed and modified as necessary. Forcing data is used to specify boundary conditions to the land surface model. The LSS in LDAS are driven by atmospheric forcing data such as precipitation, radiation, wind speed, temperature, humidity, etc., from various sources. LDAS applies spatial interpolation to convert forcing data to the appropriate resolution required by the model. Since the forcing data is read in at certain regular intervals, LDAS also temporally interpolates time average or instantaneous data to that needed by the model at the current timestep. The selected model is run for a vector of "tiles", intermediate information is stored in modular arrays, and output and restart files are written at the specified output interval.

# 2.3 CLM

CLM is a 1-D land surface model with all forcings, parameters, dimensioning, output routines, and coupling performed by an external driver of the user's design (in this case done by LDAS). The model applies finite-difference spatial discretization methods and a fully implicit time-integration scheme to numerically integrate the governing equations. The model subroutines apply the governing equations of the physical processes of the soil-vegetation- snowpack medium, including the surface energy balance equation, Richard's equation for soil hydraulics, the diffusion equation for soil heat transfer, the energy-mass balance equation for the snowpack, and the Collatz et al. formulation for the conductance of canopy transpiration.

# 2.4 NOAH

NOAH land surface model is a stand-alone, uncoupled, 1-D column model. In this uncoupled mode, near-surface atmospheric forcing data is required as input forcing. The LSS simulates soil moisture (both liquid and frozen), soil temperature, skin temperature, snowpack depth, snowpack water equivalent, canopy water content, and the energy flux and water flux terms of the surface energy balance and surface water balance. The model applies finite-difference spatial discretization methods and a Crank-Nicholson time-integration scheme to numerically integrate the governing equations of the physical processes of the soil vegetation-snowpack medium, including the surface energy balance equation, Richard's equation for soil hydraulics, the diffusion equation for soil heat transfer, the energy-mass balance equation for the snowpack, and the Jarvis equation for the conductance of canopy transpiration.

# 3 LIS General Requirements

3.1 GrADS-DODS for Data Management

Statement: LIS shall use a GrADS-DODS system for data management.

Source: LIS Milestones

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

3.2 LDAS for Data Assimilation

Statement: LIS shall use LDAS for data assimilation.

Source: LIS Milestones

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

3.3 CLM

Statement: The Community Land Model (CLM) shall run in LIS.

Source: LIS Milestones

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

3.4 NOAH

Statement: The NOAH Land Model shall run in LIS.

Source: LIS Milestones

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

3.5 VIC

Statement: The Variable Infiltration Capacity (VIC) Land Model shall

run in LIS.

Source: LIS Milestones

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

# 3.6 ALMA for Input Variables

Statement: The Assistance for Land-surface Modeling Activities (ALMA) standard shall be used for input variables.

Source: Proposal

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

# 3.7 ALMA for Output Variables

Statement: The ALMA standard shall be used for output variables.

Source: Proposal

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

# 3.8 ESMF Compliance

Statement: LIS shall comply with ESMF standards.

Source: Proposal

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

# 3.9 Internet-enabled User Interface

Statement: LIS shall provide a secured internet-enabled user interface.

Source: LIS Milestones, NPG 2810

Priority: 3

Milestone: K (Aug 2004) Dependencies: Reqs. 6.1, 6.2

# 4 LIS Science Requirements

# 4.1 Land Surface Modeling

Statement: LIS shall support global, regional or local land surface mod-

eling.

Source: Proposal

Priority: 2

Milestone: G (Feb 2004)

Dependencies: Reqs. 8.2, 8.3.2, 8.3.3, 8.3.4

Notes:

#### 4.2 Water and Energy Balance

Statement: LIS shall support water and energy balance modeling of the

land surface.

Source: Proposal

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

#### 4.2.1 Computation at User-defined Time Intervals

Statement: LIS shall support computation, input and output of water and energy fluxes and state variables at user-defined time intervals during a simulation.

Source: Proposal

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

# 4.2.2 Mass and Energy Conservation

Statement: LIS' regridding routines shall ensure mass and energy

conservation.

Source: Internal (Paul Houser)

Priority: 3

Milestone: K (Aug 2004) Dependencies: ESMF

Notes:

#### 4.3 Land/Water Mask

Statement: LIS shall support the definition of the land surface domain by a land/water mask to eliminate ocean points from a given grid.

Source: Proposal

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

#### 4.4 Run-time Definition of Domain

Statement: LIS shall allow for the definition of the model application

domain at run-time.

Source: Proposal

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

#### 4.4.1 Domain Definition

Statement: The model application domain definition shall include

- spatial resolution: 2x2.5 deg., 1/4 deg., 5km, 1km
- map projection: lat/lon, Goode Homolosine, Lambert-Conformal
- geoid: TBD
- $\bullet$ horizontal extent: 60S–90N deg lat., 0–360 deg lon., maximum
- vertical layers: 10 soil, 5 snow for CLM; 4 layers for NOAH
- number of tiles or tile quantile (aka cutoff):
  - 1-M tiles per grid-cell at 1/4 deg. resolution
  - 1-N tiles per grid-cell at 5km resolution
  - 1 tile per grid-cell at 1km resolution

Source: Proposal, Internal (Paul Houser)

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

# 4.4.2 Dynamic Tile Use

Statement: LIS shall support dynamic definition of tiles during a

given simulation. Source: Proposal

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

# 4.4.3 Tile Definition

Statement: LIS shall support a general definition of "tiles" or subgrid patches based on a combination of dynamic and static properties, including vegetation, soils, topography, forcing, or other data as needed.

Source: Proposal

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

#### 4.4.4 Time-stepping

Statement: LIS shall be able to run at 900 and 1800 second time-

steps.

Source: Internal (Paul Houser)

Priority: 2

Milestone: G (Feb 2004) Dependencies: Req. 8.3.5

Notes:

## 4.4.5 I/O

Statement: LIS shall support the input and output of 1-d, 2-d and

3-d gridded (raster) data as well as point data.

Source: Proposal

Priority: 2

Milestone: G (Feb 2004) Dependencies: Req. 8.2

Notes:

#### 4.4.6 Support for Time-dependent Variables

Statement: LIS shall support variables that change in time and 3-d

space.

Source: Proposal

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

#### 4.4.7 Restart Support

Statement: LIS shall allow a "restarted" simulation to run over a

redefined grid. Source: Proposal

Priority: 2

Milestone: G (Feb 2004)

Dependencies: Regs. 4.1, 6.4, 6.5, 8.3.1

#### 4.4.8 Start-time and End-time

Statement: LIS shall allow for the definition of the model starting date and time and the ending date and time at runtime.

Source: Proposal

Priority: 2

Milestone: G (Feb 2004) Dependencies: Req. 8.3.5

Notes:

#### 4.4.9 Mandatory Output

Statement: LIS shall output all variables marked as "mandatory" by

the ALMA standard. Source: Proposal

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

# 4.4.10 Output Frequency

Statement: LIS shall have a fixed output frequency during a given

simulation.
Source: Proposal

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

#### 4.4.11 6-d Gridded Output

Statement: LIS shall support 6-d (t,x,y,z,tile,LSS) gridded output.

Source: Internal (Christa Peters-Lidard)

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

# 4.4.12 Quality Control Output

Statement: LIS shall have the capability to output the gridded/interpolated

input data for quality control/analysis purposes.

Source: Proposal

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

#### Performance Requirements 5

# 5.1 1 ms per grid cell per day Throughput

Statement: LDAS with CLM and NOAH shall have a throughput of 1 ms per grid cell per day of execution on the SGI Origin 3000 for a near-term retrospective period computed at a 5 km resolution.

Source: LIS Milestones

Priority: 1

Milestone: F (Mar 2003) Dependencies: Req. 7.3

Notes:

#### 5.2 0.4 ms per grid cell per day Throughput

Statement: LIS shall have a throughput of approximately 0.4 ms per grid cell per day of execution on the LIS Linux cluster for a near-term retro-

spective period computed at a 1 km resolution.

Source: LIS Milestones

Priority: 2

Milestone: G (Feb 2004) Dependencies: Req. 7.6

Notes:

# 5.3 Performance Monitoring

Statement: LIS Linux cluster shall have tools for monitoring and measur-

ing throughput and node utilization.

Source: LIS Milestones

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

# Usage Requirements

# 6.1 User Levels

Statement: LIS shall have three different user-levels – general public, reg-

istered researcher, and developer.

Source: Internal (Yudong Tian)

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

#### 6.2 Web Browser User Interface

Statement: LIS shall have a secured internet-enabled user interface acces-

sible via world wide web browsers. Source: LIS Milestones, NPG 2810

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

#### 6.2.1 Read-only Access for General Public

Statement: The LIS user interface shall provide the general public

read-only access to processed data. Source: Internal (Yudong Tian)

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

# 6.2.1.1 Animated or Still Output Images

Statement: The LIS user interface shall provide output images

in animation or still format. Source: LIS Milestones

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

#### 6.2.1.2 Contour or Shaded Output Images

Statement: The LIS user interface shall provide output images

in contour or shaded plot format.

Source: LIS Milestones

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

#### 6.2.2 Password-restricted Access to Data

Statement: The LIS user interface shall provide password-restricted access to data via FTP or Grads-DODS Server for registered researchers and developers.

Source: Internal (Luther Lighty), NPG 2810

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

#### 6.2.2.1 Near-real-time Access to Data

Statement: The LIS user interface shall provide access to data on the LIS GrADS-DODS server in near-real-time.

Source: Internal (Yudong Tian)

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

#### 6.2.3 Password-restricted Access to Run Land Surface Models

Statement: The LIS user interface shall provide password-restricted access to perform Land Surface Modeling for registered researchers and developers.

Source: Internal (Luther Lighty), NPG 2810

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

# 6.3 Configuration

Statement: LIS user interface shall support the configuration of LDAS

and LSS via a web browser.

Source: Internal (Yudong Tian)

Priority: 3

Milestone: K (Aug 2004) Dependencies: Req. 6.2

Notes: A standard configuration for each LSS will be supplied.

# 6.4 Initialization via Restart

Statement: LIS shall allow for the initialization of state variables using

data or saved states from a previous run.

Source: Proposal

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

# 6.5 Write Restart Data

Statement: LIS shall provide output of state variables for use in future

initializations. Source: Proposal

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

# 6.6 Queuing System

Statement: LIS shall provide a queuing system on the LIS Linux cluster

to monitor the demand requests. Source: Internal (Yudong Tian)

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

# 6.7 Batch Mode for Operation

Statement: LIS shall execute normal job requests in batch mode where input data, configuration, and output data are read and stored directly

from file.

Source: Internal (Yudong Tian)

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

# 6.8 Debug Mode

Statement: LIS shall support a debug mode where developers may run

special test runs of LIS.

Source: Internal (Yudong Tian)

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

# 6.9 Error Logging

Statement: LIS shall log all LIS system errors. LIS system error logs and error logs generated by LDAS and the NOAH, CLM, and VIC LSS shall

be available to registered researchers and developers.

Source: Internal (Yudong Tian)

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

# 7 Platforms

# 7.1 LIS Shall Run on LIS Cluster

Statement: LIS shall run on the LIS Linux cluster.

Source: LIS Milestones

Priority: 2

Milestone: G (Feb 2004)

Dependencies: Regs. 6.2.1.1, 6.2.1.2, 6.8, 7.6, 8.2, 8.3, 8.4

Notes:

# 7.2 NOAH and CLM at 1/4 deg on SGI Origin 3000

Statement: LDAS and the NOAH and CLM LSS shall run on the SGI

Origin 3000 at 1/4 deg resolution.

Source: LIS Milestones

Priority: 1

Milestone: E (Jul 2002)

Dependencies:

Notes: This provides a test of the portability of the LSS.

#### 7.3 NOAH and CLM at 5 km on SGI Origin 3000

Statement: LDAS and the NOAH and CLM LSS shall run on the SGI

Origin 3000 at 5 km resolution.

Source: LIS Milestones

Priority: 1

Milestone: F (Mar 2003)

Dependencies:

Notes: This provides a test of the portability of the LSS.

# $7.4\,$ VIC at 5 km on SGI Origin $3000\,$

Statement: LDAS and the VIC LSS shall run on the SGI Origin 3000 at

5 km resolution.

Source: LIS Milestones

Priority: 1

Milestone: I (Jul 2003)

Dependencies:

Notes: This provides a test of the portability of the LSS.

# 7.5 LDAS and LSS at 5 km on LIS Linux cluster

Statement: LDAS and the NOAH, CLM, and VIC LSS shall run on the

LIS Linux cluster at 5 km resolution.

Source: LIS Milestones

Priority: 1

Milestone: I (Jul 2003)

Dependencies:

Notes:

#### 7.6 LDAS and LSS at 1 km on LIS Linux cluster

Statement: LDAS and the NOAH, CLM, and VIC LSS shall run on the

LIS Linux cluster at 1 km resolution.

Source: LIS Milestones

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

#### 7.7 GUI Web Browser for User Interface

Statement: LIS client user interface shall be supported on systems with a GUI web browser.

Source:

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

# 8 Data Management

# 8.1 Data Management Shall Support LIS

Statement: The management of LIS input/output data shall support the

near-real-time operation of LIS.

Source: Proposal

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

# 8.2 Grads-dods I/O

Statement: LIS shall support I/O in any GrADS-DODS supported format.

Source: Proposal

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

#### 8.3 Input Data

Statement: LIS input data shall consist of

- GEOS forcing data
- NRL precipitation data
- AGRMET short wave radiation data
- AGRMET long wave radiation data

Source: LDAS

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

#### 8.3.1 Input Data Sources

Statement: LIS shall be able to get input data from the following sources:

- GrADS-DODS servers via DODS protocol
- ALMA compliant providers with standard ALMA protocol
- Traditional data sources with direct, automatic fetch via FTP or HTTP.

# • LIS-generated restart files.

Source: Internal (Yudong Tian)

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

#### 8.3.2 Re-mapping of Input Data

Statement: LIS shall be able to re-map input data between grids,

points and tiles. Source: LDAS Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

# 8.3.3 Re-projecting of Input Data

Statement: LIS shall be able to re-project input data between lat/lon,

 ${\bf Goode\ Homolosine,\ and\ Lambert-Conformal\ projections.}$ 

Source: LDAS Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes: We expect lat/lon and Lambert-Conformal re-projections to be available via the ESMF libraries. Should Goode Homolosine reprojections be not available via the ESMF libraries, its functionality will be reevaluated.

#### 8.3.4 Input Data Spatial Interpolation

Statement: LIS shall be able to spatially interpolate gridded or pointwise input data as needed via the ipolates library or ESMF interpolation libraries to the LIS grid.

Source: LDAS Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

#### 8.3.5 Input Data Temporal Interpolation

Statement: LIS shall be able to temporally interpolate gridded or point-wise input data as needed via the LDAS zterp routine or ESMF interpolation libraries to LIS time.

Source: LDAS Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

# 8.4 Output data

# 8.4.1 GRIB for Output Data Format

Statement: The primary format of LIS output data storage is GRIB,

with accompanying metadata files.

Source: LDAS Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

# 8.4.2 Output Data Conversion

Statement: LIS shall be able to convert output data to binary, HDF

or netCDF format.

Source: GrADS-DODS Server

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

# 8.4.3 Goode Homolosine for Output Data Projection

Statement: The primary projection of output data is Goode Homolo-

sine.

Source: Internal (Paul Houser)

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

#### 8.4.4 Re-projection of Output Data

Statement: The output data shall be able to be re-projected to

lat/lon or Lambert-Conformal. Source: Internal (Paul Houser)

Priority: 2

Milestone: G (Feb 2004) Dependencies: ESMF

Notes: See notes for Req. 8.3.3

# 8.5 Data Catalog

Statement: All LIS data shall be cataloged/indexed.

Source: GrADS-DODS Server

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

8.6 Automatic Update to Catalog

Statement: The data catalogs and indexes shall be automatically updated.

Source: Internal (Yudong Tian)

Priority: 2

Milestone: G (Feb 2004)

Dependencies:

Notes:

8.7 Backup of Data

Statement: LIS data shall be backed up weekly.

Source: Internal (Yudong Tian)

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

8.8 Data Storage

Statement: LIS data shall be stored on disks with tape archives.

Source: Internal (Yudong Tian)

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

# 9 Data Reliability and Security

9.1 Data Reliability

Statement: Data shall be stored in a redundant manner to ensure data

reliability.

Source: Internal (Yudong Tian)

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

9.2 Authentication and Authorization Enforcement

Statement: Authentication and authorization shall be enforced for users

to have different levels of access to the data. Source: Internal (Luther Lighty), NPG 2810

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

9.3 Web Access Monitoring

Statement: All access through the web server will be logged.

Source: Internal (Yudong Tian)

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

9.4 Ftp Monitoring

Statement: All ftp activity will be logged.

Source: Internal (Yudong Tian)

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

9.5 Usage Limited

Statement: Resource usage by Internet users shall be limited.

Source: Internal (Yudong Tian)

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes: These resources consist of disk storage, job run-time, and length

of inactive connections.

# 10 Online User Documentation

# 10.1 On-line Overview and Help

Statement: The LIS web interface shall provide users with an on-line

overview and help functions.

Source: Internal (Luther Lighty)

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes: These help functions will be geared toward the registered researcher

and developer users.

#### 10.2 FAQ

Statement: The LIS web interface shall provide users with a FAQ list.

Source: Internal (Luther Lighty)

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

#### 10.3 Highlights Page

Statement: The LIS web interface shall provide a "highlights" page show-

ing examples of LIS applications. Source: Internal (Luther Lighty)

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes:

#### 10.4 On-line Tutorial

Statement: The LIS web interface shall provide an online tutorial to learn

system.

Source: Internal (Luther Lighty)

Priority: 3

Milestone: K (Aug 2004)

Dependencies:

Notes: This tutorial will be geared toward the registered researcher and

developer users.

# 10.5 User's Guide

Statement: The LIS user interface shall provide a link to the LIS User's

 ${\bf Guide.}$ 

Source: Internal (Luther Lighty)

Priority: 3

Milestone: K (Aug 2004)

Dependencies: